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Summary: Dichloroketene cycloadds to bullvalene to give an unusual 1,6- 

cycloadduct. The mechanism of this reaction is probed by means of suit- 

able control experiments. 

Bullvalene cl_), with its cis-divinylcyclopropane moiety and fully 

fluxional structure, is capable of exhibiting diverse modes of cycloaddit- 

ions. Dipolar cycloadditions of bullvalene to tetracyanoethylene (TCNE), 

triazolindione (TAD) and chlorosulfonyl isocyanate (CSI) have previously 

been reported.1 **#3 In the latter case, irreversible heterolytic 

opening of the initial 1,2-adduct to give a 1,6-adduct was observed.3 

Whereas the reversible and dipolar nature of myriad CSI cycloadditions has 

been well established, 4p5p6*7 dichloroketene (DCK) has previously ex- 

hibited only [2+2] cycloadditions with carbocyclic olefins.8~9*10*11 We 

describe here our results from reactions of dichloroketene with bullva- 

lene. A new variant in DCK cycloadditions is revealed. 

Slow addition of a solution of a slight excess of trichloroacetyl 

chloride in anhydrous ether to a slurry of activated zinc in an ether so- 

lution of bullvalene l2 (1) at room temperature, followed, after 12 h, by - 
work-up and preparative TLC (SiO2, n_pentane/CH2C12 95:5) afforded a 

colorless oil which gave satisfactory elemental analysis for the 

C12HlCCR20 molecular formula. Its carbonyl absorption in the IR spectrum 

at 1770 cm-l was indicative of an =, a-dichlorocyclopentanone. Its 1~ and 

‘3C NMR spectral3 permitted an unequivocal assignment of its structure to 

that of the 1,6-cycloadduct 2 (eq. 1). The formation of 2 could be inter- - 

Q ’ + CC13COCl+ Zn- Gb Cl / 
Cl 

1 2 ‘0 
(eq.1) 
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preted in terms of a two-step pathway involving the dipolar intermediate 

3, which would cyclize to 2 with cyclopropylmethyl-homoally rearrangement 

(Scheme 1). An alternative mechanism would involve initial formation of a 

1,2-cycloadduct 4 which would undergo either a thermal, or Lewis acid (in - 

this case ZnC12) catalyzed ring opening to 3. Subsequent cyclization 

with skeletal rearrangement would give 2. Since neither of these mechan- - 

istic pathways had precedence in DCK additions to carbocyclic olefins, 

Scheme I 

2 

further experiments were needed to probe the actual mechanism of this re- 

action. Toward that end, the addition of dichloroketene to bullvalene was 

repeated in the presence of equimolar amounts of POC13, which is known to 

complex a variety of Lewis acids, including ZnC12.14 The product ob- 

tained from this reaction exhibited a carbonyl absorption at 1810 cm-l, 

characteristic of =, a-dichlorocyclobutanones. Its 1H NMR spectrum (400 

MHz) was temperature dependent, as is typical of cis-fused bicyclo[5.1.0]- 

octa-2,5-diene systems.3arb On the basis of a detailed analysis of the 

NMR spectrum, supported by double-resonance experiments, and comparison 

with the literature,3atb it was conclusively shown that an equilibrium 

mixture of the 1,2-cycloadducts 4a and 4b was formed. The l3C NMR spec- - - 

trum showed eight lines (at 25.1 MHz), in full accord with the proposed 

fluxional structures. Although 2 could be purified by rapid column chro- 

matography on Si02, longer exposure to silica gel or preparative TLC, as 

well as treatment with ZnC12 in diethyl ether resulted in quantitative re- 

arrangement to 2. 

In view of the thermal stability of 4 (no rearrangement was ob- 

served in refluxing diethylether or neat at 80’ in the absence of free 

ZnC12) it can safely be deduced that the 1,6-adduct 2 stems from a con- - 

certed [2+2] cycloaddition of dichboroketene to bullvalene giving 2, 

followed by ZnC12-catalyzed, irreversible passage of 2 to 2,‘s - 
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Interestingly, other 4,8-bridged homotropylidenes, such as semi- 

bullvalene and barbaralane gave with dichloroketene (in the presence or 

absence of POC13) exclusively the corresponding 1,2-adducts, _ 513 and 6’3, - 

respectively (Fig 1). The reason why 5 and 5 do not undergo a similar - 

9 ci 1” 0 

c 5 

Fig.1 

isomerization to the corresponding 1,6-adducts can be traced to the exo- 

orientation (distal to the remote double bond) of the a, a-dichlorocyclo- 

butanone ring in these adducts. Suitably substituted semibullvalenes and 

barbaralanes (e.g., barbaralone ethylene acetal) should give endo adducts 

due to steric hindrance on the exo-face. This aspect is currently being 

investigated, as is the mechanism of the rearrangement of 3 to 2. - 
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